Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
test2(x_0, y) -> True
test2(x_0, y) -> False
append2(l1_2, l2_1) -> match_03(l1_2, l2_1, l1_2)
match_03(l1_2, l2_1, Nil) -> l2_1
match_03(l1_2, l2_1, Cons2(x, l)) -> Cons2(x, append2(l, l2_1))
part2(a_4, l_3) -> match_13(a_4, l_3, l_3)
match_13(a_4, l_3, Nil) -> Pair2(Nil, Nil)
match_13(a_4, l_3, Cons2(x, l')) -> match_25(x, l', a_4, l_3, part2(a_4, l'))
match_25(x, l', a_4, l_3, Pair2(l1, l2)) -> match_37(l1, l2, x, l', a_4, l_3, test2(a_4, x))
match_37(l1, l2, x, l', a_4, l_3, False) -> Pair2(Cons2(x, l1), l2)
match_37(l1, l2, x, l', a_4, l_3, True) -> Pair2(l1, Cons2(x, l2))
quick1(l_5) -> match_42(l_5, l_5)
match_42(l_5, Nil) -> Nil
match_42(l_5, Cons2(a, l')) -> match_54(a, l', l_5, part2(a, l'))
match_54(a, l', l_5, Pair2(l1, l2)) -> append2(quick1(l1), Cons2(a, quick1(l2)))
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
test2(x_0, y) -> True
test2(x_0, y) -> False
append2(l1_2, l2_1) -> match_03(l1_2, l2_1, l1_2)
match_03(l1_2, l2_1, Nil) -> l2_1
match_03(l1_2, l2_1, Cons2(x, l)) -> Cons2(x, append2(l, l2_1))
part2(a_4, l_3) -> match_13(a_4, l_3, l_3)
match_13(a_4, l_3, Nil) -> Pair2(Nil, Nil)
match_13(a_4, l_3, Cons2(x, l')) -> match_25(x, l', a_4, l_3, part2(a_4, l'))
match_25(x, l', a_4, l_3, Pair2(l1, l2)) -> match_37(l1, l2, x, l', a_4, l_3, test2(a_4, x))
match_37(l1, l2, x, l', a_4, l_3, False) -> Pair2(Cons2(x, l1), l2)
match_37(l1, l2, x, l', a_4, l_3, True) -> Pair2(l1, Cons2(x, l2))
quick1(l_5) -> match_42(l_5, l_5)
match_42(l_5, Nil) -> Nil
match_42(l_5, Cons2(a, l')) -> match_54(a, l', l_5, part2(a, l'))
match_54(a, l', l_5, Pair2(l1, l2)) -> append2(quick1(l1), Cons2(a, quick1(l2)))
Q is empty.
Q DP problem:
The TRS P consists of the following rules:
MATCH_25(x, l', a_4, l_3, Pair2(l1, l2)) -> TEST2(a_4, x)
MATCH_42(l_5, Cons2(a, l')) -> PART2(a, l')
APPEND2(l1_2, l2_1) -> MATCH_03(l1_2, l2_1, l1_2)
MATCH_13(a_4, l_3, Cons2(x, l')) -> PART2(a_4, l')
MATCH_54(a, l', l_5, Pair2(l1, l2)) -> APPEND2(quick1(l1), Cons2(a, quick1(l2)))
MATCH_54(a, l', l_5, Pair2(l1, l2)) -> QUICK1(l1)
QUICK1(l_5) -> MATCH_42(l_5, l_5)
MATCH_42(l_5, Cons2(a, l')) -> MATCH_54(a, l', l_5, part2(a, l'))
MATCH_03(l1_2, l2_1, Cons2(x, l)) -> APPEND2(l, l2_1)
MATCH_25(x, l', a_4, l_3, Pair2(l1, l2)) -> MATCH_37(l1, l2, x, l', a_4, l_3, test2(a_4, x))
MATCH_13(a_4, l_3, Cons2(x, l')) -> MATCH_25(x, l', a_4, l_3, part2(a_4, l'))
PART2(a_4, l_3) -> MATCH_13(a_4, l_3, l_3)
MATCH_54(a, l', l_5, Pair2(l1, l2)) -> QUICK1(l2)
The TRS R consists of the following rules:
test2(x_0, y) -> True
test2(x_0, y) -> False
append2(l1_2, l2_1) -> match_03(l1_2, l2_1, l1_2)
match_03(l1_2, l2_1, Nil) -> l2_1
match_03(l1_2, l2_1, Cons2(x, l)) -> Cons2(x, append2(l, l2_1))
part2(a_4, l_3) -> match_13(a_4, l_3, l_3)
match_13(a_4, l_3, Nil) -> Pair2(Nil, Nil)
match_13(a_4, l_3, Cons2(x, l')) -> match_25(x, l', a_4, l_3, part2(a_4, l'))
match_25(x, l', a_4, l_3, Pair2(l1, l2)) -> match_37(l1, l2, x, l', a_4, l_3, test2(a_4, x))
match_37(l1, l2, x, l', a_4, l_3, False) -> Pair2(Cons2(x, l1), l2)
match_37(l1, l2, x, l', a_4, l_3, True) -> Pair2(l1, Cons2(x, l2))
quick1(l_5) -> match_42(l_5, l_5)
match_42(l_5, Nil) -> Nil
match_42(l_5, Cons2(a, l')) -> match_54(a, l', l_5, part2(a, l'))
match_54(a, l', l_5, Pair2(l1, l2)) -> append2(quick1(l1), Cons2(a, quick1(l2)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
MATCH_25(x, l', a_4, l_3, Pair2(l1, l2)) -> TEST2(a_4, x)
MATCH_42(l_5, Cons2(a, l')) -> PART2(a, l')
APPEND2(l1_2, l2_1) -> MATCH_03(l1_2, l2_1, l1_2)
MATCH_13(a_4, l_3, Cons2(x, l')) -> PART2(a_4, l')
MATCH_54(a, l', l_5, Pair2(l1, l2)) -> APPEND2(quick1(l1), Cons2(a, quick1(l2)))
MATCH_54(a, l', l_5, Pair2(l1, l2)) -> QUICK1(l1)
QUICK1(l_5) -> MATCH_42(l_5, l_5)
MATCH_42(l_5, Cons2(a, l')) -> MATCH_54(a, l', l_5, part2(a, l'))
MATCH_03(l1_2, l2_1, Cons2(x, l)) -> APPEND2(l, l2_1)
MATCH_25(x, l', a_4, l_3, Pair2(l1, l2)) -> MATCH_37(l1, l2, x, l', a_4, l_3, test2(a_4, x))
MATCH_13(a_4, l_3, Cons2(x, l')) -> MATCH_25(x, l', a_4, l_3, part2(a_4, l'))
PART2(a_4, l_3) -> MATCH_13(a_4, l_3, l_3)
MATCH_54(a, l', l_5, Pair2(l1, l2)) -> QUICK1(l2)
The TRS R consists of the following rules:
test2(x_0, y) -> True
test2(x_0, y) -> False
append2(l1_2, l2_1) -> match_03(l1_2, l2_1, l1_2)
match_03(l1_2, l2_1, Nil) -> l2_1
match_03(l1_2, l2_1, Cons2(x, l)) -> Cons2(x, append2(l, l2_1))
part2(a_4, l_3) -> match_13(a_4, l_3, l_3)
match_13(a_4, l_3, Nil) -> Pair2(Nil, Nil)
match_13(a_4, l_3, Cons2(x, l')) -> match_25(x, l', a_4, l_3, part2(a_4, l'))
match_25(x, l', a_4, l_3, Pair2(l1, l2)) -> match_37(l1, l2, x, l', a_4, l_3, test2(a_4, x))
match_37(l1, l2, x, l', a_4, l_3, False) -> Pair2(Cons2(x, l1), l2)
match_37(l1, l2, x, l', a_4, l_3, True) -> Pair2(l1, Cons2(x, l2))
quick1(l_5) -> match_42(l_5, l_5)
match_42(l_5, Nil) -> Nil
match_42(l_5, Cons2(a, l')) -> match_54(a, l', l_5, part2(a, l'))
match_54(a, l', l_5, Pair2(l1, l2)) -> append2(quick1(l1), Cons2(a, quick1(l2)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 3 SCCs with 5 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
PART2(a_4, l_3) -> MATCH_13(a_4, l_3, l_3)
MATCH_13(a_4, l_3, Cons2(x, l')) -> PART2(a_4, l')
The TRS R consists of the following rules:
test2(x_0, y) -> True
test2(x_0, y) -> False
append2(l1_2, l2_1) -> match_03(l1_2, l2_1, l1_2)
match_03(l1_2, l2_1, Nil) -> l2_1
match_03(l1_2, l2_1, Cons2(x, l)) -> Cons2(x, append2(l, l2_1))
part2(a_4, l_3) -> match_13(a_4, l_3, l_3)
match_13(a_4, l_3, Nil) -> Pair2(Nil, Nil)
match_13(a_4, l_3, Cons2(x, l')) -> match_25(x, l', a_4, l_3, part2(a_4, l'))
match_25(x, l', a_4, l_3, Pair2(l1, l2)) -> match_37(l1, l2, x, l', a_4, l_3, test2(a_4, x))
match_37(l1, l2, x, l', a_4, l_3, False) -> Pair2(Cons2(x, l1), l2)
match_37(l1, l2, x, l', a_4, l_3, True) -> Pair2(l1, Cons2(x, l2))
quick1(l_5) -> match_42(l_5, l_5)
match_42(l_5, Nil) -> Nil
match_42(l_5, Cons2(a, l')) -> match_54(a, l', l_5, part2(a, l'))
match_54(a, l', l_5, Pair2(l1, l2)) -> append2(quick1(l1), Cons2(a, quick1(l2)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
MATCH_13(a_4, l_3, Cons2(x, l')) -> PART2(a_4, l')
Used argument filtering: PART2(x1, x2) = x2
MATCH_13(x1, x2, x3) = x3
Cons2(x1, x2) = Cons1(x2)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
PART2(a_4, l_3) -> MATCH_13(a_4, l_3, l_3)
The TRS R consists of the following rules:
test2(x_0, y) -> True
test2(x_0, y) -> False
append2(l1_2, l2_1) -> match_03(l1_2, l2_1, l1_2)
match_03(l1_2, l2_1, Nil) -> l2_1
match_03(l1_2, l2_1, Cons2(x, l)) -> Cons2(x, append2(l, l2_1))
part2(a_4, l_3) -> match_13(a_4, l_3, l_3)
match_13(a_4, l_3, Nil) -> Pair2(Nil, Nil)
match_13(a_4, l_3, Cons2(x, l')) -> match_25(x, l', a_4, l_3, part2(a_4, l'))
match_25(x, l', a_4, l_3, Pair2(l1, l2)) -> match_37(l1, l2, x, l', a_4, l_3, test2(a_4, x))
match_37(l1, l2, x, l', a_4, l_3, False) -> Pair2(Cons2(x, l1), l2)
match_37(l1, l2, x, l', a_4, l_3, True) -> Pair2(l1, Cons2(x, l2))
quick1(l_5) -> match_42(l_5, l_5)
match_42(l_5, Nil) -> Nil
match_42(l_5, Cons2(a, l')) -> match_54(a, l', l_5, part2(a, l'))
match_54(a, l', l_5, Pair2(l1, l2)) -> append2(quick1(l1), Cons2(a, quick1(l2)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 0 SCCs with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
MATCH_03(l1_2, l2_1, Cons2(x, l)) -> APPEND2(l, l2_1)
APPEND2(l1_2, l2_1) -> MATCH_03(l1_2, l2_1, l1_2)
The TRS R consists of the following rules:
test2(x_0, y) -> True
test2(x_0, y) -> False
append2(l1_2, l2_1) -> match_03(l1_2, l2_1, l1_2)
match_03(l1_2, l2_1, Nil) -> l2_1
match_03(l1_2, l2_1, Cons2(x, l)) -> Cons2(x, append2(l, l2_1))
part2(a_4, l_3) -> match_13(a_4, l_3, l_3)
match_13(a_4, l_3, Nil) -> Pair2(Nil, Nil)
match_13(a_4, l_3, Cons2(x, l')) -> match_25(x, l', a_4, l_3, part2(a_4, l'))
match_25(x, l', a_4, l_3, Pair2(l1, l2)) -> match_37(l1, l2, x, l', a_4, l_3, test2(a_4, x))
match_37(l1, l2, x, l', a_4, l_3, False) -> Pair2(Cons2(x, l1), l2)
match_37(l1, l2, x, l', a_4, l_3, True) -> Pair2(l1, Cons2(x, l2))
quick1(l_5) -> match_42(l_5, l_5)
match_42(l_5, Nil) -> Nil
match_42(l_5, Cons2(a, l')) -> match_54(a, l', l_5, part2(a, l'))
match_54(a, l', l_5, Pair2(l1, l2)) -> append2(quick1(l1), Cons2(a, quick1(l2)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
MATCH_03(l1_2, l2_1, Cons2(x, l)) -> APPEND2(l, l2_1)
Used argument filtering: MATCH_03(x1, x2, x3) = x3
Cons2(x1, x2) = Cons1(x2)
APPEND2(x1, x2) = x1
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
APPEND2(l1_2, l2_1) -> MATCH_03(l1_2, l2_1, l1_2)
The TRS R consists of the following rules:
test2(x_0, y) -> True
test2(x_0, y) -> False
append2(l1_2, l2_1) -> match_03(l1_2, l2_1, l1_2)
match_03(l1_2, l2_1, Nil) -> l2_1
match_03(l1_2, l2_1, Cons2(x, l)) -> Cons2(x, append2(l, l2_1))
part2(a_4, l_3) -> match_13(a_4, l_3, l_3)
match_13(a_4, l_3, Nil) -> Pair2(Nil, Nil)
match_13(a_4, l_3, Cons2(x, l')) -> match_25(x, l', a_4, l_3, part2(a_4, l'))
match_25(x, l', a_4, l_3, Pair2(l1, l2)) -> match_37(l1, l2, x, l', a_4, l_3, test2(a_4, x))
match_37(l1, l2, x, l', a_4, l_3, False) -> Pair2(Cons2(x, l1), l2)
match_37(l1, l2, x, l', a_4, l_3, True) -> Pair2(l1, Cons2(x, l2))
quick1(l_5) -> match_42(l_5, l_5)
match_42(l_5, Nil) -> Nil
match_42(l_5, Cons2(a, l')) -> match_54(a, l', l_5, part2(a, l'))
match_54(a, l', l_5, Pair2(l1, l2)) -> append2(quick1(l1), Cons2(a, quick1(l2)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 0 SCCs with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
MATCH_42(l_5, Cons2(a, l')) -> MATCH_54(a, l', l_5, part2(a, l'))
QUICK1(l_5) -> MATCH_42(l_5, l_5)
MATCH_54(a, l', l_5, Pair2(l1, l2)) -> QUICK1(l2)
MATCH_54(a, l', l_5, Pair2(l1, l2)) -> QUICK1(l1)
The TRS R consists of the following rules:
test2(x_0, y) -> True
test2(x_0, y) -> False
append2(l1_2, l2_1) -> match_03(l1_2, l2_1, l1_2)
match_03(l1_2, l2_1, Nil) -> l2_1
match_03(l1_2, l2_1, Cons2(x, l)) -> Cons2(x, append2(l, l2_1))
part2(a_4, l_3) -> match_13(a_4, l_3, l_3)
match_13(a_4, l_3, Nil) -> Pair2(Nil, Nil)
match_13(a_4, l_3, Cons2(x, l')) -> match_25(x, l', a_4, l_3, part2(a_4, l'))
match_25(x, l', a_4, l_3, Pair2(l1, l2)) -> match_37(l1, l2, x, l', a_4, l_3, test2(a_4, x))
match_37(l1, l2, x, l', a_4, l_3, False) -> Pair2(Cons2(x, l1), l2)
match_37(l1, l2, x, l', a_4, l_3, True) -> Pair2(l1, Cons2(x, l2))
quick1(l_5) -> match_42(l_5, l_5)
match_42(l_5, Nil) -> Nil
match_42(l_5, Cons2(a, l')) -> match_54(a, l', l_5, part2(a, l'))
match_54(a, l', l_5, Pair2(l1, l2)) -> append2(quick1(l1), Cons2(a, quick1(l2)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.